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Abstract —We present a sequential subspace 
optimization method (SSOM) to deal with the high 
dimensional electromagnetic design problems with grey 
correlation analysis (GCA) method. To implement the 
proposed method, we firstly use GCA method to divide the 
initial design space into two subspaces, significant factors 
space and non-significant factors space. Then we 
sequentially optimize those two spaces, and we can get the 
optimal solutions. Furthermore, we present two 
optimization strategies for SSOM, direct optimization and 
approximate model optimization. From a design example of 
cylindrical voice coil actuator, we can see that SSOM can 
produce satisfactory solutions and the cost of finite element 
analysis can be reduced remarkably. 

I. INTRODUCTION 
Optimizing an electromagnetic device usually includes 

two steps. One is the model construction for the device, and 
the other is the model optimization. For the former step, 
finite element model (FEM) is the most widely used model. 
It is accurate, but it is always computationally expensive or 
time consuming to carry out, especially for high 
dimensional design problems. To reduce the cost of finite 
element analysis, magnetic circuit model and several 
approximate models, such as response surface model and 
Kriging model have been introduced as the surrogate 
models [1], [2]. They are proved fast, but not very accurate, 
especially for the high dimensional problems. For example, 
the needed FEM sample points for a seven variables 
problem with five level full factorial design is 57= 78125, 
and this cost is too expensive and impractical in many cases. 

In our former work, we have introduced sequential 
optimization method (SOM) to solve such problems [3]. 
SOM is composed of several sequential model optimization 
processes and it can significantly reduce the computation 
cost. However, the cost for optimizing a high dimensional 
problem is still expensive as an additional sampling process 
of algorithm optimization is needed in the dimension 
reduction process.  

For a high dimensional problem, there are many 
variables, and some of them have significant effects to the 
objectives, while the others do not. If we separate each of 
them, a lot of FEM costs can be saved. For example, if 
there are only 2 significant variables in the above example, 

the needed FEM sample points maybe 35*52=6075, which 
is less than 10% of the former sample. Therefore, it is 
essential to develop a set of new methods for high 
dimensional design problems with the consideration of the 
significance of the factors.  
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Fig. 1. Flowchart of SSOM 

II. SSOM 
Fig. 1 illustrates the flowchart of SSOM. There are 

mainly five steps. 
1) Define the optimization problems, including design 

variables, objectives, and constraints.  
2) Sample initial data with FEM and implement the GCA 

method. From GCA method, we can divide the total space 
(X) into two subspaces, significant factors space (X1) and 
non-significant factors space (X2). GCA method is a 
sensitivity and significance analysis method which is 
conducted to evaluate the importance of the design factors 
[4]. The traditional sensitivity analysis, such as analysis of 
variance, is a ‘‘changing one factor at a time method’’, 
namely, one factor is varied while all the others are fixed. 
However, the simplicity of this method may yield 
unreliable results and an inadequate conclusion because 
factors are uncertain. Moreover, there are many coupling 
relations in the variables of high dimensional problems and 
some points needed in the analysis of variance may be 
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impossible for practical application. The basic concept of 
GCA is to determine if a relationship among a series of data 
is close, based on the degree of similarity among the 
geometric shapes of the data series curves. It is a better 
choice for many engineering problems, so we present in 
this paper.  

3) Optimize the significant factors space X1. In the 
implementation, the parameters in X2 are set to be fixed 
values which come from the analysis solutions of GCA. 
Two optimization models will be employed, FEM and 
Kriging approximate model [1], [2]. 

4) Optimize the significant factors space X2. In the 
implementation, the parameters in X1 are set to be constant 
which come from the optimization of the last step.  
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Fig. 3. Magnetic relevant part in the third constraint 

TABLE I 
5) Terminate step. If /f f εΔ ≤ , output the optimal 

solutions. Otherwise, go to step 3 and implement the 
optimization process again. 

OPTIMAIZATION RESULTSS OF CVCA 

Parameter Unit DEA FEM Kriging 

x1 mm 9.8682 10.7522 11.8667 

x2 mm 8.9773 8.7813 8.6751 

x3 mm 13.4858 14.8021 15.1090 

x4 mm 1.7226 1.6148 1.6022 

x5 mm 3.1425 3.3231 3.5822 

x6 mm 4.4563 6.0477 6.2694 

x7 mm 2.5688 2.3946 2.5582 

Force N 5.0127 4.9906 4.9050 

Coil mass g 9.9413 9.9908 10.0098 

Total mass g 79.1953 84.0488 91.0728 

FESP –– 6725 4316 2267 

III. CYLINDRICAL VOICE COIL ACTUATOR 

Fig. 2 illustrates an axisymmetrical model of cylindrical 
voice coil actuator (CVCA) [5], [6]. There are seven design 
parameters for this problem. The optimization objective and 
constraints are listed as follows. 
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From the table, we can see that SSOM can produce 

satisfactory solutions. Compared with solution from DEA, 
the objectives from two SSOM are a little bigger, and the 
solution from Kriging is about 15.0% more than that from 
DEA. But for the cost of finite element analysis, the direct 
optimization is the biggest, and for the SSOM with Kriging 
model, the finite element sample points (FESP) has been 
saved by 66.29% compared with that of DEA. Therefore, 
the proposed method is very promising. 

 where smin, smax are constant, and the design ranges and 
some material parameters can be seen in [5], [6]. 
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Fig. 2. Design model of CVCA: (a) material, (b) parameters 
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